MicroRNA profiling in plasma samples using qPCR arrays: Recommendations for correct analysis and interpretation
نویسندگان
چکیده
MicroRNA (miRNA) regulate gene expression through posttranscriptional mRNA degradation or suppression of translation. Many (pre)analytical issues remain to be resolved for miRNA screening with TaqMan Low Density Arrays (TLDA) in plasma samples, such as optimal RNA isolation, preamplification and data normalization. We optimized the TLDA protocol using three RNA isolation protocols and preamplification dilutions. By using 100μL elution volume during RNA isolation and adding a preamplification step without dilution, 49% of wells were amplified. Informative target miRNA were defined as having quantification cycle values ≤35 in at least 20% of samples and low technical variability (CV across 2 duplicates of 1 sample <4%). A total of 218 miRNA was considered informative (= 59% of all target miRNA). Different normalization strategies were compared: exogenous Ath-miR-159a, endogenous RNA U6, and three mathematical normalization techniques: geNorm (Qbase, QB) and NormFinder (NF) normalization algorithms, and global mean calculation. To select the best normalization method, technical variability, biological variability, stability, and the extent to which the normalization method reduces data dispersion were calculated. The geNorm normalization algorithm reduced data dispersion to the greatest extent, while endogenous RNA U6 performed worst. In conclusion, for miRNA profiling in plasma samples using TLDA cards we recommend: 1. Implementing a preamplification step in the TLDA protocol without diluting the final preamplification product 2. A stepwise approach to exclude non-informative miRNA based on quality control parameters 3. Against using snoRNA U6 as normalization method for relative quantification 4. Using the geNorm algorithm as normalization method for relative quantification.
منابع مشابه
Pitfalls and recommendations for microRNA expression analysis using qPCR
Introduction Over the last few years, qPCR has become the most widely used method for the study of microRNAs. It is fast, extremely sensitive and offers linear detection over several orders of magnitude. Exiqon’s miRCURY LNATM Universal RT microRNA PCR system can profile microRNAs on panels in just three hours and offers a linear range of 7 orders of magnitude. The ingenious design, using LNATM...
متن کاملSystematic enrichment analysis of microRNA expression profiling studies in endometriosis
Objective(s): The purpose of this study was to conduct a meta-analysis on human microRNAs (miRNAs) expression data of endometriosis tissue profiles versus those of normal controls and to identify novel putative diagnostic markers. Materials andMethods: PubMed, Embase, Web of Science, Ovid Medline were used to search for endometriosis miRNA expression profiling studies of endometriosis. The miRN...
متن کاملUrine microRNA profiling to discover biomarkers for nephrotoxicity
microRNAs represent the best described class of small RNAs (21-23nt) and have been shown to function as post-transcriptional regulators of gene expression. The high relative stability of microRNA in common clinical samples such as serum/plasma, urine and other biofluids, and the ability of micro RNA expression profiles to accurately classify discrete tissue types and specific disease states hav...
متن کاملImproved microRNA quantification in total RNA from clinical samples.
microRNAs are small regulatory RNAs that are currently emerging as new biomarkers for cancer and other diseases. In order for biomarkers to be useful in clinical settings, they should be accurately and reliably detected in clinical samples such as formalin fixed paraffin embedded (FFPE) sections and blood serum or plasma. These types of samples represent a challenge in terms of microRNA quantif...
متن کاملCerebrospinal fluid MicroRNA profiling using quantitative real time PCR.
MicroRNAs (miRNAs) constitute a potent layer of gene regulation by guiding RISC to target sites located on mRNAs and, consequently, by modulating their translational repression. Changes in miRNA expression have been shown to be involved in the development of all major complex diseases. Furthermore, recent findings showed that miRNAs can be secreted to the extracellular environment and enter the...
متن کامل